Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(19): 10070-10084, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38701115

RESUMO

Developing an improved synthesis method that controls the morphology and crystal phase remains a substantial challenge. Herein, we report phase and morphology-controlled hydrothermal synthesis of tungsten oxides by varying acid concentration and utilizing glutathione (GSH) as a structural directing agent, together with the exploration of their applications in supercapacitors, photoconductivity, and photocatalysis. Orthorhombic hydrated tungsten oxide (WO3·0.33H2O) with nonuniform block and plate-like morphology was obtained at 3 M hydrochloric acid (HCl). In contrast, nonhydrated monoclinic tungsten oxide (WO3) with smaller rectangular blocks was obtained at 6 M HCl. Further, the addition of GSH results in an increase in the surface area of the materials along with a narrowing of the band gap. Moreover, it plays a pivotal role in regulating the morphology through oriented attachments, Ostwald ripening, and the self-assembly of WO3 nuclei. GHTO and GTO polymorphs showed pseudocapacitive behavior with the highest specific capacitances of 450 and 300 F g-1 at 0.5 A g-1, maintaining 94 and 92% retention stability, respectively, over 1000 cycles at 2 A g-1. Also, the synthesized materials displayed favorable photoconductivity under light irradiation, implying potential utilization in photovoltaic applications. Moreover, these materials exhibited remarkable photocatalytic performance in the degradation of methylene blue (MB) dye, establishing themselves as highly effective photocatalysts. Therefore, nanostructured tungsten oxide showcases its versatility, rendering it an appealing candidate for energy storage, photovoltaic systems, and photocatalysis.

2.
Nanoscale ; 16(16): 8060-8073, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38563265

RESUMO

Exploring the reaction mechanism and the role of a catalyst in the conversion of pollutants to value-added products is vital for sustainable development. Herein, a polyvinylpyrrolidone-assisted liquid-phase reflux strategy was utilized to synthesize anisotropic 1D-2D Bi2S3 nanostructures. The as-synthesized nanostructures were used as catalysts in batch experiments for 4-nitrophenol (4-NP) reduction and they exhibited an apparent rate constant (kapp), turnover frequency (TOF), and activation energy (Ea) of 0.441 min-1, 1.543 h-1 and 26.13 kJ mol-1, respectively. Also, the effects of catalyst dosage, NaBH4 amount, 4-NP concentration, solvents, pH, and common ions were evaluated. Isotope labeling and kinetic isotope effects (KIEs) confirm that water is the proton source in 4-NP reduction. Electrochemical studies revealed that the nanostructured 1D-2D Bi2S3 enables the dissociation of BH4- into active absorbed and adsorbed hydrogen () species and assists in the catalytic reduction of 4-NP. This study offers a new insight into designing an efficient nanostructured 1D-2D Bi2S3 catalyst for 4-nitrophenol reduction.

3.
Nanoscale ; 15(35): 14551-14563, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37609951

RESUMO

Thiol-ene/yne click reactions play a significant role in creating carbon-sulfur (C-S) bonds, and there has been a growing interest in using visible-light photoredox catalysis for their formation. In this study, anisotropic 1D Bi2S3 nanorods were prepared using a simple polyol-assisted reflux method, and they were used as catalysts for the thiol-ene/yne click reactions under visible light irradiation. The developed protocol is highly compatible and tolerant to various substrates with excellent product yields. Also, thiol-ene and -yne reactions achieved maximum TONs of 93 and 95, respectively. Detailed mechanistic studies were conducted and supported by NMR studies, radical trapping utilizing TEMPO, and ESI-MS product analysis. The ability of Bi2S3 nanorods to catalyze thiol-ene/yne reactions is primarily due to the creation of photoexcited holes, which aid in the formation of thiyl radicals. This method can be scaled up to the gram-scale synthesis of benzyl styryl sulfide with an excellent chemical yield of 90%. The 1D Bi2S3 nanorods also demonstrated structural and morphological stability throughout five reaction cycles while maintaining a favorable photocatalytic activity. The developed methodology had the advantages of broad substrate scope, mild reaction conditions, scaled-up synthesis, and nonrequirement of free radical initiators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...